中教数据库 > International Journal of Mining Science and Technology > 文章详情

Simulation of recovery of upper remnant coal pillar while mining the ultra-close lower panel using longwall top coal caving

更新时间:2023-05-28

【摘要】With the depletion of easily minable coal seams, less favorable reserves under adverse conditions have to be mined out to meet the market demand. Due to some historical reasons, large amount of remnant coal was left unrecovered. One such case history occurred with the remnant rectangular stripe coal pillars using partial extraction method at Guandi Mine, Shanxi Province, China. The challenge that the coal mine was facing was that there is an ultra-close coal seam right under it with an only 0.8–1.5 m sandstone dirt band in between. The simulation study was carried out to investigate the simultaneous recovery of upper remnant coal pillars while mining the ultra-close lower panel using longwall top coal caving(LTCC). The remnant coal pillar was induced to cave in as top coal in LTCC system. Physical modelling shows that the coal pillars are the abutments of the stress arch structure formed within the overburden strata. The stability of overhanging roof strata highly depends on the stability of the remnant coal pillars. And the gob development(roof strata cave-in) is intermittent with the cave-in of these coal pillars and the sandstone dirt band. FLAC3 D numerical modelling shows that the multi-seam interaction has a significant influence on mining-induced stress environment for mining of lower panels. The pattern of the stress evolution on the coal pillars with the advance of the lower working face was found. It is demonstrated that the stress relief of a remnant coal pillar enhances the caveability of the pillars and sandstone dirt band below.

【关键词】

389 2页 免费

发表评论

登录后发表评论 (已发布 0条)

点亮你的头像 秀出你的观点

0/500
以上留言仅代表用户个人观点,不代表中教立场
相关文献

推荐期刊

Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved

京ICP备2021021570号-13

京公网安备 11011102000866号